÷."

-B

. . .

a e

201

H.T.No.

R20

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY	(:: PUT	TUR				
	(AUTONOMOUS)							
		B.Tech. II Year II Semester Supplementary Examinations Ju CAD/CAM	ne-202	25				
<i>.</i>		(Mechanical Engineering)						
Tii	me	: 3 Hours (Answer all Five Units 5 x 12 = 60 Marks)	Max.	Mark	cs: 60			
		UNIT-I						
1	a	Draw the product cycle and CAD/CAM product cycle with neat Sketch.	CO1	L2	6M			
	b	Explain the product cycle and CAD/CAM product cycle.	CO1	L2	6M			
		OR						
2	a	Explain about homogeneous transformations.	CO1	L2	6M			
	b	Write short notes on Rotation about a Fixed Point, Reflections and Shears.	C01	L2	6M			
		UNIT-II						
3		Explain the Constructive Solid Geometry (CSG) method to create models.	CO2	L2	12M			
		OR						
4	a	Define the solid modeling and Explain any one type of solid Modeling.	CO2	L2	6M			
		Compare 2-D and 3-D wire frame models.	CO2	L2	6M			
		UNIT-III						
5	a	Differentiate Manual part programming and Computer assisted part programming.	CO3	L4	6M			
	b	What are the advantages and disadvantages of Numerical control system?	CO3	L1	6M			
		OR						
6	a	Explain in detail about cutter radius compensation.	CO 4	L2	6M			
	b	Write a short notes on Manual part programming.	CO4	L2	6M			
		UNIT-IV						
7	a	Explain about production flow analysis (PFA).	CO5	L2	6M			
		Write brief notes on Group Technology.	CO5	L1	6M			
		OR						
8	a	Explain in detail about Machine cell design.	CO5	L3	6M			
	b	Elucidate briefly optical non-contact inspection methods.	CO5	L2	6M			
		UNIT-V						
9		Illuminate MRP-II with neat sketch and also write its benefits.	CO6	L2	12M			
		OR	-					
10	a	Differentiate MRP-I and MRP-II.	CO6	L2	6M			
	b	Explain the features of MRP-I with a neat block diagram. State its	CO6	L2	6M			
		applications.						
		*** FND ***						

H.T.No. **R20** SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS) B.Tech. II Year II Semester Supplementary Examinations June-2025 MICROPROCESSORS AND MICROCONTROLLERS (Common to CSE & CSIT) **Time: 3 Hours** Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I 1 Draw a block diagram of Microprocessor based system and explain the **CO1** L4 **12M** functions of each component: Microprocessor, Memory and I/O and their line communication. OR 2 **a** Illustrate the microcomputer system with example. **CO1 L3 6M** b Draw the block diagram of output section of Microcomputer. Describe **CO2 L4 6M** the role of tristate bus driver, decoder and latch. UNIT-II a Define an interrupt and explain the different types of interrupts available 3 **CO2** L2 **6M** in the 8085 microprocessor. **b** List out the control and status signals in 8085 microprocessor. L1 **CO2 6M ∂R** 4 a Explain the functions of a program counter, stack pointer & ALU in **L2 CO2 6M** 8085 µP. **b** Draw the flag register of the 8085 microprocessor and explain each bit L2 **CO2 6M** in detail. UNIT-III 5 Draw the pin diagram of 8051 microcontroller and describe the **CO3** L2 **12M** functionality of each pin in detail. OR a Explain how the 8051 microcontroller transfers the serial data input and 6 **CO2 L5 6M** output using UART. **b** Compare serial communication and parallel communication. **CO4 L3 6M** UNIT-IV 7 a Explain the moving data instructions of 8051 microcontroller with an **CO4** L2 **6M** example. **b** Draw and explain the external addressing using mov x and mov c. **CO4 L3 6M** OR **a** List various incrementing and decrementing instructions with examples 8 **CO4 L1 6M** in 8051 microcontroller. b Develop and write an assembly program of 8051microcontroller to **CO6 L6 6M** unsigned additional and subtraction two 8-bit numbers and store the result in a 2055&2057 memory location. UNIT-V 9 a Discuss about Keyboards and human factors **CO5 L6 6M b** Describe and draw the keyboard configurations. **CO5 L2 6M** OR 10 a Illustrate the multiple source interrupt circuit used in Lopri and Hipri CO6 **L2 6M** program. b Design and explain the real-time application using 8051 Microcontroller CO6 **L6 6M** with suitable block diagram.

R20

H.T.No.

ú

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOG	Y:: PUT	TUR					
	(AUTONOMOUS) B.Tech. II Year II Semester Supplementary Examinations June-2025								
		DATABASE MANAGEMENT SYSTEMS	10 2023						
Time		(Common to CIC & CCC) B Hours	Max. Ma	rke	60				
1 1111		(Answer all Five Units $5 \times 12 = 60$ Marks)	MAA. MIC	ai 85.	00				
		UNIT-I							
1	a	Define Database. Discuss about applications of Database Systems.	CO1	L3	6M				
	b	List out the purpose of Database Systems.	CO1	L2	6M				
		OR							
2	a	Illustrate about Views of data.	CO1	L4	6M				
	b	Outline the Data Abstraction and discuss levels of Abstraction.	CO 1	L2	6M				
3	я	Illustrate different operations in Relational algebra with an example.	CO2	L3	6M				
5		Discuss about the operators renaming, division	CO2	L3 L2	6M				
	N	OR	002		UNI				
4	ล	What is a Join? Discuss about various joins used in SQL.	CO2	L4	6M				
		Discuss about Complex integrity constraints in SQL	CO2	L2	6M				
		UNIT-III	001		01/1				
5	a	Illustrate redundancy and the problems that it can cause.	CO3	L3	6M				
	b	Explain about Functional Dependency.	CO3	L4	6M				
		OR							
6	a	Compare Trivial and Non - Trivial Functional Dependencies with	n CO3	L3	6M				
		example.							
	b	What is Normalization? List out the of purpose normalization.	CO3	L3	6M				
		U NIT-IV							
7	a	Define a Transaction.List the properties of transaction	CO4	L4	6M				
	b	How do you implement Atomicity and Durability.	CO4	L3	6M				
		OR							
8		Explain ACID properties and illustrate them through examples	CO4	L3	12M				
		UNIT-V							
9	a	What is Deadlock recovery? Explain the different methods in deadlock	CO5	L4	6M				
	b	Explain in detail about Deadlock detection	CO 5	L2	6M				
		OR							
10	a	Discuss about failure with loss of non-volatile storage.	CO5	L3	6M				
	b	Classify various levels of RAID with neat diagrams	CO5	L3	6M				

*** END ***

一般の一般の「「「「「「」」」」

日本市会社の教育のためです。

O.P.Code: 20CS0901

R20

_	_		اا		
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)			
		B.Tech. II Year II Semester Supplementary Examinations Ju FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE (Common to CSM & CAD)	ne-20	25	
Ti	me	(Answer all Five Units $5 \ge 12 = 60$ Marks)	Max.	Marl	cs: 60
		UNIT-I			
1	a	Define AI. How it is organized? Explain the categories of it in detail.	CO1	L1	6M
	b	Explain the role of AI in Education and Finance.	CO1	L2	6M
		OR			
2	a	Define Intelligent system and Elaborate about its thinking ability.	CO1	L1	6M
	b	Explain the role of AI in Online and telephone customer service	CO1	L2	6M
3	a	Illustrate general steps in Problem Solving in Artificial Intelligence.	CO2	L2	6M
	b	Explain in detail about Problem Solving in Control Strategies.	CO2	L2	6M
		OR			
4		Design 8 Queens's problem using State Space Search with example.	CO2	L6	12M
5	a	Describe Propositional Logic along with its syntax and types.	CO3	L2	6M
	b	Prove { $P \rightarrow Q, Q \rightarrow R$ } - ($P \rightarrow R$), i.e., $P \rightarrow R$ is a deductive	CO3	L5	6M
		consequence of			
		$\{ P \rightarrow Q, Q \rightarrow R \}$ using Axiomatic System			
		OR			
6	a	Discuss about "Resolution in Propositional Logic" and explain with an example.	CO3	L2	6M
	b	Express Tautologies and Contradictions with Truth tables.	CO3	L2	6 M
7	a	How representations and Mappings in KR is done? Explain.	CO4	L2	6M
		Describe the approaches to Knowledge Representation?	CO4	L2	6M
		OR			
8	a	Distinguish Inferential Knowledge Vs Procedural Knowledge.	CO4	L4	6M
	b	How non binary predicates are represented using semantic net. Explain	CO4	L2	6M
		with suitable example.			
		UNIT-V			
9	a	What do you mean by expert system technology? Explain.	CO5	L1	6M
,		Distinguish between forward chaining and backward chaining.	CO5	L1 L2	6M
	IJ	OR	005		UIVI
10		Explain Components of Expert Systems in detail.	CO5	L2	12M
IV		*** END ***	005		14111

0.	P. C	Cod	e: 2	0CS	14	01
----	-------------	-----	------	-----	----	----

R20

$ \mathbf{H} $.T	.N	0.

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY	:: PU7	TUR	
	(AUTONOMOUS) B.Tech. II Year II Semester Supplementary Examinations Jur ARTIFICIAL INTELLIGENCE AND ITS APPLICATION	ne-20	25	
Ti	CSE(Artificial Intelligence) ne: 3 Hours		Mar	ks: 60
	(Answer all Five Units 5 x 12 = 60 Marks)			
1	a Define Artificial Intelligence and Elaborate about its think ability	CO 1	L1	6M
	b How AI evolve over Tic – Tac – Toe Game Playing? Deduce with an	CO1	L3	6M
	example. Write a program for tic-tac-toe game playing.			UT/L
	OR			
2	a Explain the role of AI in Education and Finance.	CO1	L2	6M
	b Explain the role of AI in Online and telephone customer service.	CO1	L2	6M
3	a Explain about BFS. Deduce it with an example. List the Pros and Cons in it.	CO2	L2	6M
	b Write an example program for BFS using python.	CO2	L1	6M
	OR		141	UIVI
4	a Explain about DFS. Deduce it with an example. List its Pros and Cons`.	CO2	L2	6M
	b Write an example program for DFS using python.	CO ₂	L1	6M
	UNIT-III			
5	a How representation of Simple Facts in Logic is done? Explain	CO3	L2	6M
	b What are the Uses of predicate logic? Make use of it and analyze the	CO3	L2 L3	6M
	how it can create Resolution for it.	005	113	UNI
	OR			
6	a Write the algorithm of "Resolution in Propositional Logic" and explain with an example.	CO3	L1	6M
	b What is set-of-support strategy and how predicate logic complements by making use of it.	CO3	L3	6M
	UNIT-IV			
7	a Distinguish Inferential Knowledge Vs Procedural Knowledge	CO5	L2	6M
		CO5	L2	6M
	with suitable example.	000		UIVE
	OR			
8	a List the set of primitives and conceptual tenses used in Conceptual	CO5	L2	6M
	Dependency.			
	b List the ways in which classes are related to each other in frames, with suitable example.	CO5	L2	6M
	UNIT-V			
9	Discuss about Text Classification and its approaches.	CO6	L2	12M
	OR			*****
10		CO6	L2	12M

Q.]	P.C	code: 20CE0160 R20 H.T.No.							
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR								
	(AUTONOMOUS) B.Tech. II Year II Semester Supplementary Examinations June 2025								
		FLUID MECHANICS & HYDRAULIC MACHINERY		-					
Tin	ne:	(Agricultural Engineering) 3 Hours	Max.	Marl	ts: 60				
		(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I							
1		Differentiate between kinematic viscosity and dynamic viscosity. Give their dimensions.		L4	6M				
	b	Calculate the density, specific weight, and weight of one liter of petrol with a specific gravity of 0.7.	CO1	L3	6 M				
2	a	Explain the terms compressibility and bulk modulus.	CO1	L2	6M				
	b	Obtain an expression for the capillary fall of a liquid.	CO1	L2	6M				
3		UNIT-II Derive Euler's equation of motion with a next elected	000	т.	1015				
3		Derive Euler's equation of motion with a neat sketch. OR	CO2	L4	12M				
4	a	The water is flowing through a pipe having diameters of 20cm and 10cm at sections 1 and 2, respectively. The rate of flow through the pipe is 35 liters/s. Section 1 is 6 m above the datum, and section 2 is 4 m above the	CO2	L4	8M				
		datum. If the pressure at section 1 is 39.24 N/cm2, find the intensity of pressure at section 2.							
	b	Explain the Energy gradient line and the Hydraulic gradient line.	CO2	L2	4M				
5		A horizontal pipeline 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank, the pipe is 150 mm in diameter, and its diameter is suddenly enlarged to 300 mm. The height of the water level in the tank is 8 m above the centre of the pipe. Considering all losses of head that occur, determine the rate of flow. Take $f = 0.01$ for both sections of the pipe. OR	CO3	L3	12M				
6		List out minor losses in pipe flow and write the equations for all minor losses.	CO3	L1	12M				
7	a	UNIT-IV A jet of water moving at 12 m/s impinges on a vane shaped to deflect the jet through 120° when stationary. If the vane is moving at 5 m/s, find the angle of the jet so that there is no shock at the inlet. What is the absolute velocity of the jet at exit in magnitude and direction, and the work done per second per unit weight of water striking per second? Assume that the vane is smooth.	CO4	L4	12M				
8		Derive an expression for jet strikes the curved plate at the centre and at one end tangentially when the plate is unsymmetrical.	CO4	L2	12M				
9		Derive the expression for velocity triangles and work done by the Pelton wheel with a neat sketch.	CO5	L2	12M				
10	a	OR A centrifugal pump delivers water against a net head of 14.5m and a design speed of 1000 r.p.m. The vanes of curved back to an angle of 30° with the periphery. The impeller diameter is 300mm and outlet width is 50mm.Determine the discharge of the pump if manometric efficiency is 95%.	CO5	L3	7M				
	b	Explain pumps in series and parallel. *** END ***	C05	L2	5M				

Page 1 of 1

CUNNER OF

0.P	.Code: 20CE0111 R20 H.T.No.						
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)							
	B.Tech. II Year II Semester Supplementary Examinations Ju HYDRAULIC ENGINEERING	ne-202	25				
Tim	(Civil Engineering) e: 3 Hours (Answer all Five Units 5 x 12 = 60 Marks)	Max.	Mark	xs: 60			
1	UNIT-1 Prove that for a channel of circular section, the depth of flow d=0.81D for maximum velocity.	CO 1	L3	12M			
2	OR Derive an expression for maximum velocity of flow through a circular section.	CO1	L2	12M			
3	UNIT-II What is hydraulic jump and derive the expression for depth of hydraulic jump	CO2	L2	12M			
4	jump. OR What is back water curve and afflux? Derive the expression for length of back water curve	CO2	L2	12M			
5	back water curve. UNIT-III Derive the expression for force exerted by a jet on stationary curved	CO3	L2	12M			
6	plate if jet strikes the curved plate at the Centre and at one end. OR Obtain the expression for the force exerted by jet of water on a fixed	CO3	L3	12M			
7	vertical plate in the direction of the jet. UNIT-IV What is centrifugal pump? Explain the parts of centrifugal pump with	CO4	L1	12M			
	neat sketch.						
8	Explain the different types of hydraulic similarities that must exist between aprototype and its model.	CO4	L2	12M			
	a What is a turbine and give the classification in detail? Give the various efficiencies.		L1	6M			
	 b Explain Radial flow reaction turbine with a neat diagram. OR a Define (i) Speed ratio (ii) Flow ratio (iii) Diameter of turbine (iv) Radial 	CO5	L1 L1	6M 6M			
	 a Define (1) Speed ratio (1) Flow ratio (11) Diameter of turbine (1v) Radial discharge. b Define the term unit power, unit speed and unit discharge with reference to ahydraulic turbine. And also derive the expression for these terms. *** END *** 	C05	L1	6M			

*** END ***

「「「「「「「「」」」」」

 a^{2}

* ¹²

.

.

R20

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY	' :: PUT '	ΓUR	
		(AUTONOMOUS)			
		B.Tech II Year II Semester Supplementary Examinations Jur	<u>1e-202</u>	5	
		ELECTRICAL POWER TRANSMISSION SYSTE	MS		
	-	(Electrical & Electronics Engineering)			
Tim	e: 3		ax. Ma	rks:	60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I	001	~ ~	
1		Explain the different types of conductors briefly	CO1	L3	6M
	b	Explain the skin effect in transmission lines.	CO1	L3	6M
		OR	~ ~ .		
2		Explain the internal and external flux linkages of a single current-	CO1	L3	12M
		carrying conductor.			
		UNIT-II			
3	a	Derive the sending voltage and % voltage regulation in short	CO2	L3	6M
		transmission lines with a neat phasor diagram.			
	b	Explain the different types of transmission lines	CO2	L3	6M
		OR	000		1015
4		A 100 km long, 3-phase, 50 Hz transmission line has following line	CO2	L3	12M
		constants: Resistance/ph/km=0.10hm, Reactance/ph/km=0.50hm,			
		susceptance /ph/km=10×10e-6S.If the line supplies a load of 20 MW at			
		0.9 p.f lagging at 66 kV at the receiving end. Calculate (i) Sending end power factor (ii) % regulation (iii) Transmission efficiency by using the			
		nominal T Method.			
		UNIT-III			
5		Explain the potential distribution over a string of suspension insulator	CO3	L3	6M
5	a	string.	COS	LJ	UIVI
	Ь	What is string efficiency? Explain any two methods for improving string	CO3	L3	6M
	U	efficiency.	COJ	115	UNI
		OR			
6		What are the methods of reducing the corona effect?	CO3	L3	12M
Ū		UNIT-IV			
7		Derive the expression for sag for equal supports.	CO4	L3	6M
/		A 132 kV transmission line has the following data: weight of conductor	CO4	L3	6M
	U	=680kg/km; length of span = 260m; ultimate strength =3100kg, safety	004	LJ	UNI
		factor=2, calculate height above the ground at which the conductor			
		should be supported. Ground clearance is 10 meters.			
		OR			
8	}	Define sag and Derive the expression for sag and tension when the	CO4	L3	12M
•		supports are at unequal heights.			
		UNIT-V			
9)	Write short notes on (i) inter sheath grading and (ii) capacitance grading	CO5	L3	12M
		OR		-	
1	0	Explain the construction of underground cables.	CO5	L3	12M

		ode: 20EC0409	R20		H.T.No.				T				
<u> </u>		SIDDHARTH INSTITU		<u> </u>						71			,
		SIDDHARTH INSTITU			DMOUS)	× 11	LCI	INOL	UGI		UI	IUK	
		B.Tech. II Year II Sem							s Ju	ne-	-202	25	
			ECTRONIC ronics & Cor										
		Time: 3 Hours				8-			tx. N	/Iar	ks:	60	
		(4	Answer all Fi		Jnits 5 x 12 JNIT-I	= 60	0 Ma	arks)					
1	a	Draw the Hybrid-pi model component in it.	and explain	the	significance	e of	eacl	n and o	every	C	CO1	L3	6M
	b	Deduce the expression for I high frequency.	Emitter diffus	sion	capacitance OR	of C	CE tr	ansisto	or at	C	CO4	L4	6M
2	а	Define Cascading in amplif	iers and expl	lain		case	cadir	1g.		C	CO1	L1	6M
_		Analyze an n-stage cascad							h the		CO5	L3	6M
		help of a block diagram.		U	NIT-II								
3	a	Explain the basic concept diagram.	of feedback	k in	amplifier	with	sui	table	olock	C	201	L2	8 M
	b	List the characteristics of no	egative feedb	back	amplifiers. OR					C	CO1	L1	4M
4	a	An RC coupled amplifier h response from 100 Hz to 2 0.02 is incorporated into	20 KHz. A no	legat	ncy gain of 2 tive feedbac	k ne	two	rk witl	nβ=	:	CO5	L4	6M
	b	performance. Explain the effect of nega shunt and Voltage shunt Fe		lifier		istar	nce	for Cı	ırrent	C	C O 3	L2	6M
5	a	Explain the principle of wo classify the various types of	0		NIT-III llator with s	uital	ble d	liagran	n and	C	C O 3	L2	8M
	b	Explain Barkhausen criterio			O D					C	C O 1	L2	4M
6	9	Explain the working of a C	rystal oscillat	tor a	OR indisketch it	s cha	aract	eristic	\$	C	203	L2	8M
Ū		In a Wein-bridge oscillator									CO6	L3	4M
		oscillation is 10 KHz, Calc		le of				Ŷ					
7	a	With neat diagram, expla Amplifier and determine its		d di	rectly coup	led	Clas	s A P	ower	•	C O2	L2	6 M
	b	Discuss about Transformer and determine its Maximum	coupled Clas			plifi	er w	rith dia	gram	0	C O2	L3	6M
					OR								
8	a	Explain the operation of a necessary circuit diagrams.	single tuned	d ca	pacitive cou	plec	l am	plifier	with	• •	C O 2	L4	6M
	b	Explain the effect of cascad	ling single tu		amplifiers o NIT-V	n ba	ındw	idth.		C	C O 1	L3	6M
9		Define a Multivibrator and									CO1	L1	4M
	b	With neat sketch, explain multivibrator.	the workin	ng c		or c	oup	led As	stable	; (C O 3	L2	8M
40			an afth D'	n 4 - 1 - 1	OR a multivilum	+	× 1.41-	0 00-4			202	1.2	οτ
10	a	Explain briefly the operation diagram and draw wavefor	rms.			uor v	with	a neat	circu			L2	8M 4M
	D	List the applications of the			ND ***					C	C O 1	L1	4M

 e^{\pm}

* ₂ *

G (2)

e¹⁸

* *

R20	H.'
N20	

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)					
		B.Tech. II Year II Semester Supplementary Examinations Ju PYTHON PROGRAMMING	ne-202	25	
		(Common to CSE,CSIT,CIC & CCC)			
Tim	le:	3 Hours (Answer all Five Units $5 \times 12 = 60$ Marks)	Max.	Mark	s: 60
	UNIT-I				
1	a	Discuss about History of Python Language.	CO1	L2	4M
	b	List out the Features and Applications of Python.	CO1	L1	8M
		OR			
2	a	Explain about the Single-Valued data types in python.	CO1	L2	6M
	b	Discriminate about the Multi-Valued Data types with example.	CO1	L5	6M
		UNIT-II			
3	a	Discuss the Membership and Identity operators with example.	CO2	L2	6M
	b	write a python program to find biggest number among three numbers.	CO2	L1	6M
		OR			
4	a	Analyze the Python jump statements with suitable examples.	CO2	L6	6M
	b	Explain break, continue and Pass statement with the help of for loop with	CO2	L2	6M
		an example.			
		UNIT-III			
5	a	Define function and explain the types of functions with an example.	CO3	L1	6M
	b	Discuss about key word arguments with example.	CO3	L2	6M
		OR			
6		Define Class and Object with example code.	CO3	L1	6M
	b	Analyze the term: Self-variable with code.	CO3	L4	6M
		UNIT-IV			
7	a	Describe about name spacing.	CO4	L2	6M
	b	Explain about the import statement in modules.	CO 4	L2	6M
		OR			
8	a	Write a python code using try-except-else-finally statement in python.	CO4	L3	6M
	b	What is a Raising Exception? Write any user defined exception program	CO4	L1	6M
		with raising exception.			
		UNIT-V			
9	a	Illustrate the Command line arguments.	CO5	L3	6M
	b	Explain the reading and writing files in python.	CO5	L2	6M
		OR			
10	a	Discuss the colors and filled shapes in python using turtle.	CO5	L2	6M
	b	Illustrate Python Runtime Services and Data Compression.	CO5	L3	6M
		*** END ***			

0.P.Code: 20CS0506 R20 H.T.No.

 $\mathbf{x}^{\mathbf{x}}$

• * *

3 (B)

<u></u>							
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR						
		(AUTONOMOUS)					
		B.Tech. II Year II Semester Supplementary Examinations Ju		5			
		OBJECT ORIENTED PROGRAMMING THROUGH JAV	A				
T 1		(Common to CAD, CSM, CAI)	Max.	Mar1	ra: 60		
1111	le:	3 Hours (Answer all Five Units $5 \times 12 = 60$ Marks)	Max.	Mai	19: 00		
		UNIT-I					
1	a	Illustrate Following operators With the suitable example.	CO1	L3	6M		
		i) Bit-wise operator ii) Conditional operator					
	b	Explain History and Evolution of Java?	CO1	L2	6M		
		OR					
2		Write a Java program to read and display the elements of array.	CO2	L6	12M		
3	a	What is a package? How to create user defined package in java with example.	CO2	L1	6M		
	b	Distinguish Method Overriding and Method Overloading. OR	CO2	L5	6 M		
4		Write a java program to implement an interface using your own	CO2	L3	12M		
		example.					
		UNIT-III					
5		Write a java program to create own exception for Negative Value	CO3	L6	12M		
J		Exception if the user enter negative value.	0.00	~			
		OR					
6	я	What is a String? Explain different String declarations with an example.	CO3	L2	6M		
U		Write a java program to check the given string is palindrome or not.	CO2	L6	6M		
	U	UNIT-IV	001	10	VIVE		
-			COA	T C	6M		
7		Write short notes on collection interfaces and their methods.	CO4	L6	6M		
	b	Establish the following interfaces with java programs	CO5	L3	6M		
		i) The Collection Interface ii) The Set iii) The Map.Entry					
0		OR	COA	Тć	<u>CM</u>		
8		How to create a file in java with example.	CO4	L6	6M		
	b	How to Write and Read a file in java with an example	CO4	L3	6M		
		UNIT-V	~~ <		1075		
9		Write a java Program to implement an AWT based calculator with basic operations.	CO6	L6	12M		
		OR					
10		Explain the following methods in java.	CO5	L2	12M		
		i) Default method					
		ii) Static method					
		iii) forEach() method					
		*** END ***					

~⁶

• 1

, ×

R20

H.T.No.

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)						
	B.Tech. II Year II Semester Supplementary Examinations June-2025						
T:		ENGINEERING GEOLOGY (Civil Engineering) 3 Hours	Mor	Monte	~ 60		
1111	le:	(Answer all Five Units $5 \times 12 = 60$ Marks)	Max.	Mark	s: 60		
		UNIT-I					
1	a	Explain the role of importance of geology in civil engineering.	CO1	L2	6M		
	b	Describe chemical weathering in detail.	CO1	L1	6M		
		OR					
2	a	What is weathering? Enumerate the various mechanisms of rock	CO1	L1	6M		
		weathering.					
	b	Distinguish between weathering and erosion.	CO 1	L2	6M		
		UNIT-II					
3		Discuss briefly the physical properties of Quartz and talc.	CO2	L2	6M		
	b	Explain different methods of study of minerals.	CO2	L2	6M		
		OR					
4	a	Write physical properties of Olivine and Hornblende minerals.	CO2	L1	6M		
	b	Write physical properties of Calcite and Kyanite minerals.	CO2	L1	6M		
		UNIT-III					
5	a	Describe the columnar flow and sheet structures of igneous rocks.	CO3	L2	6M		
	b	Write detailed note on rock cycle.	CO3	L1	6M		
		OR					
6	a	Explain the structures and textures of sedimentary rocks.	CO4	L2	6M		
	b	What are the classification of igneous rocks?	CO4	L1	6M		
		UNIT-IV					
7	a	What is an Unconformity? Describe different types of unconformities.	CO5	L1	8M		
		Write a note on the Importance of unconformity.	CO5	L1	4M		
		OR					
8	a	Explain in detail about Magnetic methods.	CO5	L2	8M		
	b	Write a note on Magnetic method applications.	CO5	L1	4M		
		UNIT-V					
9	a	Explain various investigation uses in groundwater exploration.	CO6	L2	6M		
		Write down the geological control of ground water movement.	CO 6	L1	6M		
		OR					
10	a	What are dams.and types of dams.	CO6	L1	6M		
	b	Explain the Narrow river valley.	CO 6	L2	6M		
		*** END ***					

1

2

3

4

5

6

7

8

9

ñ.,

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR (AUTONOMOUS) B.Tech. II Year II Semester Supplementary Examinations June-2025 **POWER ELECTRONICS** (Electrical & Electronics Engineering) **Time: 3 Hours** Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I Draw and explain V-I Characteristics of Power Diode. **CO1** L2 **12M** OR Illustrate the Current commutation and draw the output wave forms. **CO1 L4 12M** UNIT-II Describe the operation of single-phase Full wave converter with R-**CO2 L2 12M** Load at α =45 with necessary wave forms. Also derive the output voltage, output current and RMS output voltages. OR Differentiate the half-controlled converter and fully controlled CO2 L2 **12M** converter. **UNIT-III** Describe the step-down chopper with neat diagrams **CO3** L2 **12M** OR A DC chopper is connect to a 100V DC source supplies an inductive **CO3 L3 12M** load having 40 mh in series with a resistance of 50hms. A freewheeling diode is placed across the load. The load current varies between the limits of 10A and 12A. Determine the time ratio of the chopper. UNIT-IV Describe the principle of operation of single phase to single phase CO4 L2 **12M** Bridge type step-down cycloconverter with Resistive Load. OR Illustrate the principle of operation of single phase to single phase CO4 **L4 12M** step- down Bridge type cycloconverter with Resistive Inductive Load for Continuous Load Current. UNIT-V Describe about the single-phase half wave ac voltage controller with CO5 **L2 12M** resistive load.

H.T.No.

R20

OR

10 Illustrate the operation of TRIAC with R and RL load. **CO6** L4 **12M** *** END ***

H.T.No.						
O.P.Code:20ME0309 R20			-1			
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech. II Year II Semester Supplementary Examinations June-2025 MATERIALS SCIENCE (Mechanical Engineering) Max. Marks: 60						
Time: 3 Hours						
1 Define the following terms: (i) Space lattice (ii) Unit cell (iii)primitive cell (iv) Bonding energy	CO1	L1	12M			
 (v) Atomic packing factor (vi) crystal structure OR 2 Evaluate the cooling curve of solidification of a pure metal with Diagram. 	CO1	L5	12M			
 3 a Construct a phase diagram and explain briefly and list out different types 	CO2	L6	6M			
 b Define invariant reactions in phase Diagram with examples. 	CO2	L1	6M			
 b Define invariant reactions in phase Diagram OR 4 a Evaluate Gibbs Phase rule, What are the uses of phase diagram b Define single and multiphase solids with examples 	CO2 CO2	L4 L1	6M 6M			
5 Evaluate Grey cast iron structure and properties.	CO3	L4	12M			
6 What are the notable properties of Copper and its alloys? And Draw copper-	CO3	L1	12M			
 7 Name the various methods of heat treatment of steel. Briefly explain any one 		L1	12M			
method. OR 8 What are TTT diagrams? How they prepared? What is their significance?	CO 4	L1	12M			
9 What are the various methods of component manufacture of composites	? CO5	5 L1	12M			
Briefly explain any one method. OR 10 Compare the following composite material properties and its applications (i) Polymer matrix composites (ii) Metal matrix composites *** END ***		5 L4	12M			

ſ

6

£.*

1

R20

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech. II Year II Semester Supplementary Examinations June-2025 DIGITAL COMMUNICATIONS

(Electronics and Communications Engineering)

Time: 3 Hours Max. Marks:					50
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-1			
1	a	Explain fundamental limitations of Communication Systems.	CO1	L2	6M
	b	Compare Analog and DigitalCommunication.	CO1	L2	6M
		OR			
2	a	Explain the Process of Quantization through one Example?	CO1	L2	6M
	b	Discuss the different types of Quantization in Detail?	CO1	L2	6M
		UNIT-II			
3	a	What are the effects of ISI?	CO5	L1	6M
	b	Describe Eye pattern and construct the diagram.	CO2	L2	6M
		OR			
4	a	Explain in detail about modified duo binary signaling scheme?	CO4	L2	6M
	b	Describe the baseband M-array PAM Transmission system.	CO2	L2	6M
		UNIT-III			
5	a	Draw the block diagram of a most basic form of digital communication	CO1	L1	6M
		system.			
	b	Illustrate optimum receiver for AWGN channel.	CO5	L2	6M
		OR			
6	a	Explain the Schwarz Inequality.	CO4	L2	6M
	b	Determine signal representation of a signal N=2and M=3.	CO4	L2	6M
		UNIT-IV			
7	a	Derive an expression for probability of error in BFSK.	C05	L3	6M
	b	What is Bandwidth of BPSK, BFSK?	C02	L1	6M
		OR			
8	a	Describe the generation and detection of DPSK.	C04	L2	6M
	b	A binary data stream 101101100 is to be transmitted using DPSK.	C04	L4	6M
		UNIT-V			
9	a	Explain the Convolutional Encoding and Decoding methods.	C03	L2	6M
	b	Discuss in brief about sequential decoding of convolutional codes.	C03	L2	6M
		OR			
10	a	What is forward error correction system and explain in detail?	C04	L1	6M
	b	Describe the matrix representation of linear block codes.	C05	L2	6M
		*** END ***			

R20

H.T.No.

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)							
	B.Tech. II Year II Semester Supplementary Examinations June-2025 UNIX & SHELL PROGRAMMING							
Tir	ne	: 3 Hours (Computer Science & Information Technology) (Answer all Five Units 5 x 12 = 60 Marks)	Max.	Mark	cs: 60			
1	a	UNIT-I Describe in detail about the Architecture of UNIX.	CO 1	L2	6M			
	b	How can you say that Unix operating system provides more security than other operating systems.	CO 1	L2	6M			
2	a	ORa) Describe the commands listed below:i) mkdirii) rmdiriii) cativ) cd	CO 1	L 2	8M			
	b	Describe the commands listed below: i) head ii) tail	CO 1	L2	4M			
3		UNIT-II Explain Variables with its Types and Options.	CO2	L3	12M			
4	a h	OR What is an option? Mention at least three options and their use? what are the three unix commands used to compare the contents of file ?	CO2 CO2	L2 L3	6M 6M			
	U	Explain each command in detail.	002	25	UNI			
5	a b	What is K shell ? Explain startup scripts in K shell. What is an Environment variable ? List out the environment variables.	CO3 CO3	L3 L2	6M 6M			
6		OR List and explain the expressions involved in Korn shell.	CO3	L3	12M			
U		UNIT-IV	005	LJ	12111			
7	a b	Explain startup and shutdown scripts in C shell. What is C Shell ? Explain two Special files.	CO4 CO4	L3 L3	6M 6M			
8		OR Discuss about repetition statements and repetition control statements in C shell with examples.	CO 4	L 2	12M			
9		What is File structure ? Explain the file structure of UNIX.	CO5	L3	12M			
10		OR Briefly explain about the following system calls with syntax : link,		L3	12M			
~~		symlink, unlink, stat, lstat, fstat.		20	1.4111			

0	.P.	Code: 20CS1001 R20 H.T.No.			
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOG (AUTONOMOUS)	Y:: PU]	TUR	
		B.Tech. II Year II Semester Supplementary Examinations Ju	Jne-20	25	
		CRYPTOGRAPHY AND DATA SECURITY CSE (Internet of Things and Cyber security Including Block Chain T	echnolo	(vr	
Tim	e: 3	3 Hours N	lax. M		60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
1		UNIT-I			
1		Classify possible types of attacks in cryptography.	C01	L1	6M
	U	What is security approache? Explain various methods of security approaches.	CO1	L1	6M
		OR			
2		Discuss Play fair cipher in Detail.	CO1	L2	6M
	b	Compare Encryption and Decryption Process.	CO1	L3	6 M
-		UNIT-IIL3			
3		Examine the general structure of DES with neat sketch.	CO2	L4	12M
4	•	OR			
4	a	Establish Affine cipher Encryption and Decryption process using the keyword "MONARCHY" and keys a=3, b=5.	CO2	L3	6M
	b	Explain Double & Triple DES with keys.	CO2	L2	6M
		UNIT-III	02	LZ	OIVI
5	a	Explain the RSA algorithm. Compute cipher text for M=88, p=17, q=11,	CO3	L2	6M
		e=7.	000		UII
	b	Examine the structure of X448 key exchange and its algorithms.	CO3	L4	6M
		OR			
6		Discuss about key scheduling and round transformation of IDEA.	CO3	L2	6M
	b	Infer the concept of Elgamal Cryptography algorithm.	CO3	L3	6M
7		UNIT-IV			
7	a		CO4	L3	6M
	h	(i) Salami attack. (ii) Trap Door Discuss Hash Functions and Two Simple Hashing functions in detail.	COA	1.2	
	~	OR	CO4	L2	6M
8		What is security attack? Explain different Types of Security attacks.	CO 4	L2	12M
		UNIT-V			
9	a	Examine Secure Hash Algorithm and applications.	CO5	L4	6M
	b	Infer the characteristics, working and components of Encapsulating	CO5	L3	6M
		security payloads.			
10	-	OR Differentiate Later Older 1 - 1 Older			
10		Differentiate between SHA1 and SHA2.	CO5	L4	6M
		Explain various types of Authentication Protocols and its advantages and disadvantages.	CO5	L3	6M
		and arous fully of			

*** END ***

U

H.T.No.

のないので、「ない」にないたのであったのである

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR						
	(AUTONOMOUS) B.Tech. II Year II Semester Supplementary Examinations June-2025						
		COMPUTER NETWORKS					
Tir	ne:	(Common to CAD, CSM, CSE)	Max.	Mar	ks: 60		
	(Answer all Five Units $5 \times 12 = 60$ Marks)						
1		UNIT-I	0.01				
1		Explain in detail about OSI reference model.	CO1	L2	12M		
2	a	Illustrate about Coaxial cable.	CO1	L3	6M		
	b	Explain in detail about Fiber optic cable.	CO1	L2	6M		
		UNI T-II					
3	a	Explain about the services provided by the Data link layer.	CO2	L2	6M		
	b	The set of	CO2	L2	6M		
4	9	OR Write about Point to Point (PPP) protocol in detail.	CON	T 4	^{OM}		
	b	Write about CDMA protocol.	CO2 CO2	L4 L4	6M 6M		
		ONIT-III	001		UIVI		
5	a	Calculate the Shortest Path Algorithm considering an example.	CO3	L4	6M		
	b	Explain in detail about Flooding.	CO3	L2	6M		
(OR					
6	a b	Sketch and explain in detail about IPV4protocol. Write about BGP– Exterior Gateway routing protocol.	CO4	L3	6M		
	D	UNIT-IV	CO3	L4	6M		
7		Explain the three-way handshake protocols with suitable diagram.	CO5	L2	12M		
		OR					
8	a	Write in detail about performance issues of transport layer.	CO4	L4	6M		
	b	Sketch and explain in detail about User Datagram Protocol (UDP).	CO5	L3	6M		
0		Describe chart sector and 1' d'al	6 .0.7	~ -			
9		Describe short notes on application layer. Illustrate in detail about function and structure of e-mail protocol.	CO6	L2	6M		
		• OR	CO6	L3	6M		
10	a	Write in detail about DNS Name Space and Domain Resource records.	CO 6	L4	6M		
		Explain about secure shell in application layer.	CO6	L2	6M		
		*** ENI) ***					

L	0.1	P.Code: 20CS0523 R20 H.T.No.			
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOG (AUTONOMOUS)	¥ :: PU	TTUF	2
		B.Tech II Year II Semester Supplementary Examinations Ju DESIGN AND ANALYSIS OF ALGORITHMS	une-20)25	÷.,
Ti	me	(Common to CCC & CAI) (Answer all Five Units 5 x 12 = 60 Marks)	Max. N	Iarks	: 60
		UNIT-I			
	1	a What do you mean by algorithm? List some of the properties of itb Classify the rules of Pseudo code for Expressing Algorithms	CO 1	L1	6M
		b Classify the rules of Pseudo code for Expressing Algorithms. OR	CO 1	L2	6M
	2	Demonstrate Towers of Hanoi with algorithm and example.	CO1	L3	12 M
	3	Explain techniques of binary trees with suitable example	CO2	L2	12M
	4	OR			
	4	Analyze the working strategy of merge sort and illustrate the process of merge sort algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13.	CO2	L4	12M
		UNIT-III			
4	5	Explain in detail about general method of greedy method with algorithm and list the few applications of greedy method.	CO3	L2	12M
	-	OR			
0		server and a general method of dynamic programming.	CO3	L3	3M
		Build any one application of dynamic programming with an example.	CO3	L6	9M
7		Distinguish in detail 8-queens problem using back tracking with state space tree.	CO4	L4	12M
		OR			
8	a 1	Explain the principles of FIFO branch and bound.	CO4	L2	6M
	D	Explain the principles of LIFO branch and bound.	CO 4	L2	6M
0		UNIT-V			
9		Construct the non-deterministic algorithms with suitable example.	CO5	L3	12M
1() a	OR Statement the following with examples	007	x /	0.5
~`		i) Optimization problem . ii) Decision problem .	CO5	L4	6M
	b	Explain and shows the relationship between P,NP,NP Hard and NP Complete with neat diagram.	CO5	L3	6 M
		*** END ***			

ŧ

O.P.Code: 2	20CE0114
-------------	----------

9

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR (AUTONOMOUS) B.Tech. II Year II Semester Supplementary Examinations June-2025 **GEOTECHNICAL ENGINEERING** (Civil Engineering) **Time: 3 Hours** Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I 1 a Classify various types of soil structures occur in nature with neat sketch. C01 **L**3 **6M b** Explain clay mineralogy with neat sketch. C01 1.2 **6M** OR 2 **a** Write short notes on Index Properties of soils. ·C01 1.3 6Mb Explain in detail the laboratory method for particle size distribution of CO1 $\mathbf{L5}$ **6M** coarse grained soils by dry sieve analysis. UNIT-11 3 a Differentiate between compaction and consolidation. **CO2** 14 **6M b** Differentiate between Standard proctor test and Modified proctor test. CO2 1.4 **6M** OR 4 What is consolidation? Describe briefly various types of consolidation CO₂ L1**12M** of soils. UNIT-III **a** What do you understand by 'Pressure bulb'? Illustrate with sketches. 5 CO3 1.16**M** b Explain vertical stress under line load, strip load, circular load and CO3 1.5 $6\mathbf{M}$ rectangular area with neat sketch. OR Describe the vane shear test with a neat sketch. 6 CO4 L212**M** UNIT-IV 7 **a** What are the factors causing the slope failures? C05 1.1 6**M b** Explain different types of slope failures with neat sketches. C05 1.2 6**M** OR 8 A canal is to be excavated through a soil with c = 15 kN/m2, $\phi = 200$, e CO5 $\mathbf{L4}$ 12**M** = 0.9 and G = 2.67. The side slope is 1 in 1. The depth of the canal is 6 m. determine the factor of safety with respect to cohesion when the canal runs full. What will be the factor of safety if the canal is rapidly emptied. UNIT-V a What are the different stages in sub soil exploration? CO6 1.2 $6\mathbf{M}$ **b** Explain various uses of site investigations. CO6 Ľ.2 **6M O**R 10 Give a detailed account on how Standard Penetration Test is conducted. CO6 11 12MWhat are the relevant corrections applied to SPT number?

H.T.No.

R20

p 1

2

0	Ρ.	Co	de:	20EE0210
v		$\sim \sim$	ac.	ACTECTIO

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

H.T.No.

B.Tech. II Year II Semester Supplementary Examinations June-2025 ELECTRICAL MACHINES-II

R20

(Electrical and Electronics Engineering)

Time: 3 Hours

(Answer all Five Units 5 x 12 = 60 Marks)

UNIT-I

1		Explain the construction and working principle of $1-\phi$ transformer.	CO1	L2	12M
2	a	Explain the equivalent circuit of a single-phase transformer referred to	CO 1	L2	6M
	b	the primary side. A single-phase transformer has 500 primary and 1200 secondary turns. The net cross-sectional area of the core is 80cm^2 . If the primary winding is connected to 50Hz supply at 500V, calculate the value of maximum flux density on core and the emf induced in the secondary.	CO1	L2	6M
		UNIT-II			
3		Explain the 1- ϕ auto transformers in detail with a neat diagram. OR	CO2	L2	12M
4		Obtain the approximate equivalent circuit of a given 200/2000V, 1-\$\oplus, 25KVA transformer having the following test results.OC test: 200V, 6A, 350W on LV side.SC test: 70 V, 15A, 600W on HV side.	CO2	L3	12M
5		UNIT-III Explain the production of rotating magnetic field in a 3- ϕ induction motor with a graphical presentation.	CO3	L2	12M
	-	OR	CO1	1.2	(M
6		Explain rotor current frequency of the induction motor. Explain the power flow diagram of the induction motor.	CO3 CO3	L2 L2	6M 6M
		UNIT-IV			
7		Explain no-load and blocked rotor tests of a $3-\phi$ induction motor. OR	CO 4	L3	12M
8		Explain Torque-Slip Characteristics of a $3-\phi$ induction motor. Explain the terms Crawling and Cogging in a $3-\phi$ induction motor.	CO4 CO4	L2 L2	6M 6M
		UNIT-V			
9		Explain the double field revolving theory of a $3-\phi$ induction motor. OR	CO5	L2	12M
10		Explain why the single-phase induction motor is not self-starting. List out the applications of single-phase induction motor.	CO5 CO5	L2 L2	6M 6M

*** END ***

Max. Marks: 60

Page 1 of 1

CO5 L2 6M

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: (AUTONOMOUS)	: PUTT	UR						
	B.Tech. II Year II Semester Supplementary Examinations June-2025 MANUFACTURING PROCESSES									
(D) †	(Mechanical Engineering)									
T1 n	1e:	3 Hours (Answer all Five Units $5 \times 12 = 60$ Marks)	Max. N	lark	s: 60					
		(Answer an Five Omis 5 x 12 – 60 Marks) UNIT-1								
1	a	List the main advantages and applications of the casting process.	CO1	L1	6M					
	b	What are the major limitations of the sand casting process and how are they overcome?	CO1	L2	6M					
		OR								
2	a	Sketch the cross section of a sand mould which is ready for pouring, and	CO1	L3	6M					
		label the various important parts.								
	b	Briefly explain the procedure to be followed for making a sand mould.	CO1	L2	6M					
		UNIT-II								
3	a	Explain the working of oxy acetylene gas welding	CO2	L2	6M					
		Distinguish three types of welding flames and for what applications these	CO2	L2	6M					
		are used.								
		OR								
4	a	Compare TIG and MIG welding processes.	CO2	L1	6M					
	b	Explain the classification of welding processes briefly.	CO2	L2	6M					
		UNIT-III								
5	a	Discuss the different types of rolling mills with a neat sketch.	CO3	L3	6M					
	b	Write the advantages and disadvantages of rolling processes?	CO3	L2	6M					
		OR								
6	a	What is bulk deformation process?	CO3	L2	6M					
	b	List out the applications of hot rolling and cold rolling process.	CO3	L2	6M					
		UNIT-IV								
7	a	What are the characteristics of sheet metal?	CO4	L3	6M					
	b	What are the various types of shearing operations?	CO4	L2	6M					
		OR								
8	a	Explain bending operations with suitable sketches.	CO4	L2	6M					
	b	Sketch & explain the Drawing operation.	CO4	L2	6M					
		UNIT-V								
9	a	Explain the working principles and application of compression Moulding.	CO5	L3	6M					
		Explain the working principles and application of Rotational Moulding.	CO5	L1	6M					
		OR								
10	a	Explain the structure of thermo plastic and thermosetting plastics.	CO5	L2	6M					
		Even lain the polymonization builder	COF	T O	(1)					

b Explain the polymerization briefly.

n . .

*** END ***

O.P.Code: 20ME0308 **R20**

* y *

R20

H.T.No.

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLO	GY:: PUT	TUR								
		(AUTONOMOUS) B Tech II Vear II Semester Supplementary Examinations	lune_201	25								
	B.Tech. II Year II Semester Supplementary Examinations June-2025 LINEAR & DIGITAL IC APPLICATIONS											
	(Electronics & Communications Engineering)											
Tim	e:	3 Hours (Answer all Γ_{i} a Units 5 $=$ 12 $=$ (0 Marks)	Max. I	Aarks:	60							
		(Answer all Five Units 5 x 12 = 60 Marks)										
1	a	Compare and contrast the ideal and practical Op-Amp of IC 741.	CO3	L2	6M							
1	b	Determine the output voltage of a differential Amplifier for the input	CO3	L2 L2	6M							
	~	voltages of $300\mu V$ & $240\mu V$. The Differential gain of the amplifier is 5000.the value of the CMRR is 100.	000		VIII							
		OR										
2	a	With neat sketch explain the operation of an Instrumentation amplifier.	CO4	L3	8M							
	b	Explain the operation of an Inverting A.CAmplifier.	CO4	L2	4M							
3	a	Define Oscillator. List thet ypes of oscillators.	CO1	L1	4M							
	b	Derive the frequency of RC phase shift oscillator using Op-Amp.	CO4	L3	8M							
4	a	OR With the help of schematic diagram explain how 555 timer can be	CO4	L4	6M							
-	a	used as Mono stable multivibrator.	004	DT	UNI							
	b	Explain the operation of Astable multivibrator using 555 timer and	CO4	L2	6M							
		also derive the expression for frequency of oscillation.										
		UNIT-III										
5	a	Draw and explain the weighted resistor DAC.	CO4	L2	6M							
	b	Draw and explain the operation of R-2R DAC.	CO 4	L2	6 M							
6		OR Draw and explain successive approximation type ADC with an	CO5	L2	12M							
U		Example.	005		12111							
		UNIT-IV										
7	a	Explain about libraries and packages	CO5	L2	6M							
	b	Write the syntax for functions and procedures with an example?	CO6	L1	6M							
		OR										
8	a	Explain the behavioral design elements of VHDL	CO5	L2	6M							
	b	What is the importance of time dimension in VHDLand explain.	C05	L2	6M							
9	a	Explain the operation of standard IC for $\overline{3X8}$ decoder with necessary	CO6	L2	6M							
		truth table and internal architecture.	001		(* *							
	b	Distinguish between the synchronous and asynchronous counters. OR	CO6	L1	6M							
10		Design an 8 -bit serial in and serial out shift register and write a VHDL	CO6	L4	12M							
IV		code for it.	000	117	⊥₩⊥ŸI							

O.P.Code: 20HS0812

P 3 P

R20

	H	.T	.N	0.
--	---	----	----	----

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B Tech. II Year II Semester Supplementary Examinations June-2025										
	B.Tech. II Year II Semester Supplementary Examinations June-2025 MANAGERIAL ECONOMICS & FINANCIAL ANALYSIS										
(Common to CSM, CAD, CIC, CCC & CAI) Time: 3 Hours Max. Marks: 60											
Time	(Answer all Five Units 5 x 12 = 60 Marks)										
1	a	Identify nature of managerial economics through its definitions.	CO1	L2	6M						
	b	CO1	L3	6M							
		OR									
2		Evaluate various methods of demand forecasting techniques.	CO1	L4	12M						
3	a	Define production function. Explain production function with one variable input.	CO2	L2	6M						
	b	Explain the law of returns with appropriate examples. OR	CO2	L2	6M						
4		A firm has Fixed Cost of Rs 10000/-, selling price per unit is Rs.5/- and	CO2	L4	12M						
		variable cost per unit is Rs. 3/- (i)Determine Break Even Point in terms of Volume and also Sales Value									
		(ii)Calculate the Margin of safety considering that the actual production									
		is 8000 units.									
		UNIT-III									
5	-		CO 2	та							
5		Discuss various characteristics of market.	CO3	L2 L2	6M						
	D	State the features of Imperfect competition. OR	CO3	LZ	6M						
6		Illustrate the price and output determination in case of monopoly.	CO3	L2	12M						
		UNIT-IV									
7		Define capital budgeting. Explain the various methods of Capital Budgeting.	CO 4	L2	12M						
		OR									
8		Consider the case of the company with the following two investment	CO4	L5	12M						
		alternatives each costing Rs.9 lakhs. The details of cash inflows are as									
		follows:									
		Year 1 2 3									
		Project1 3,00,000 5,00,000 6,00,000									
		Project2 6,00,000 3,00,000 4,00,000									
		Estimated cost of capital is 10% per year. Determine NPV for the two									
		projects.									
•		UNIT-V	005	¥ 4							
9	a	What is meant by Ratio analysis?	CO5	L1	6M						
	b	Explain briefly about various types of ratios.	CO5	L2	6 M						
10		OR White short notes on language Terror Datis and Language holding	COF	τ.σ	1934						
10		Write short notes on Inventory Turnover Ratio and Inventory holding periods. And also calculate with following data. A Firm sold goods	CO5	L5	12M						
		worth Rs 5, 00,000 and its gross profit is 20 percent of sales value. The									
		inventory at the beginning of the year was Rs 16000 and at end of the									
		year was Rs 14000.									
		*** END ***									

(AUTONOMOUS) B.Tech. II Year II Semester Supplementary Examinations June-2025 STRUCTURAL ANALYSIS (Civil Engineering) **Time: 3 Hours** Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I Derive an expression for maximum positive/negative shear force and **CO1** L2 **12M** 1 maximum bending moment for a simply supported beam subjected to two point loads W1 and W2 with a constant spacing between them. OR 2 Four point loads of 120kN, 160kN, 160kN and 80kN spaced 2m between L3 **CO1 12M** consecutive loads move on a girder of 25m span from left to right with 120kN load leading. Calculate the maximum bending moment, maximum +ve & -ve hear force at a point of 10m from the left support. Also calculate the position & value of absolute maximum bending moment. **UNIT-II** 3 State and derive Castigliano's first theorem. **CO2** L2 **12M** OR Using the method of virtual work, determine the horizontal displacement of CO2 **L4 12M** 4 a point C of the frame shown in the figure. Take $E = 2 \times 10^5 \text{ N/mm}_2$ and I = $4 \times 10^6 \text{ mm}^4$. 10 kN/m 2.5r 30 kN 2.5 UNIT-III Analyse the continuous beam loaded as shown in the figure by slope **CO3** L4 **12M** 5

20 kN/m 15 kN/m (21) <u>* 2m * 2m * 2m * 2m * </u> **4**m 4m

deflection method and sketch the bending moment diagram 80kN 80kN

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR

OR

R20

O.P.Code: 20CE0115

H.T.No.

6 Analyse the frame shown below. Assume uniform flexural rigidity.

7 Analyse the continuous beam ABCD shown in the figure by moment CO4 L4 12M distribution procedure.

OR

8 Analyse the frame shown in the figure by moment distribution method. CO4 L4 12M

9 Explain the steps involved in Flexibility matrix and Stiffness methods of CO5 L2 12M analysis.

OR

10 Analyse the continuous beam shown in the figure using flexibility matrix CO5 L4 12M method.

O.P.Code: 20CS0512

Time: 3 Hours

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year II Semester Supplementary Examinations June-2025 FORMAL LANGUAGES AND AUTOMATA THEORY

R20

(Common to CSE & CSIT)

Max. Marks: 60

(Answer all Five Units 5 x 12 = 60 Marks)

- 1 a Define relations on sets and explain its properties with an example. CO1 L1 6M
 - b State what is meant by finite automata and discuss the Applications and CO1 L3 6M Limitations FA.

OR

2 Convert the following NFA with ε moves to NFA without ε moves by CO1 L3 12M ε closure method.

3 a Prove R=Q+RP has unique solution, R=QP*CO3L34Mb Construct RE from given FA by using Arden's Theorem.CO3L68M

UNIT-II

OR

CO3 L1 a State Pumping lemma for regular languages. **4M** 4 **b** Prove that $L = \{aibi \mid i \ge 0\}$ is not regular. **CO3 L3 8M** UNIT-III a State what is meant by derivation and parse tree with examples. **CO4** L1 4M5 **CO4 L3 b** Remove Left recursion from the grammar **8M** $S \rightarrow Sab/T$ $T \rightarrow Tcd/F$

F→Fa/G

OR

H.T.No.

6	a	Evaluate simplification of the grammar for the following context free	CO4	L5	8M
		grammar.			
		S→Aa /B			
		B→a/bc			
		$C \rightarrow a / \epsilon$			
	b	List the closure properties of CFLs.	CO4	L1	4M
		UNIT-IV			
7	a	Explain acceptance of PDA with empty stack.	CO5	L5	6M
	b	Construct PDA from the following Grammar.	CO5	L5	6M
		S→aB B→bA/b A→aB			
		OR			
8		Write the process adapted and convert the given PDA into an equivalent	CO5	L3	12M
		CFG.			
		$\delta (\mathbf{q}_0, \mathbf{a}_0, \mathbf{z}_0) \rightarrow (\mathbf{q}_1, \mathbf{z}_1 \mathbf{z}_0)$			
		$\delta(\mathbf{q}_0,\mathbf{b},\mathbf{z}_0) \rightarrow (\mathbf{q}_1,\mathbf{z}_2\mathbf{z}_0)$			
		$\delta(q_1, a, z_1) \rightarrow (q_1, z_1 z_1)$			
		$\delta(q_1, b, z_1) \rightarrow (q_1, \lambda)$			
		$\delta(q_1, b, z_2) \rightarrow (q_1, z_2 z_2)$			
		$\delta(q_1, a, z_2) \rightarrow (q_1, \lambda)$			
		$\delta(q_1, \lambda, z_2) \rightarrow (q_1, \lambda) // \text{ accepted by the empty stack.}$			
		UNIT-V			
9	a	State Turing machine.	CO6	L1	2M
	b	Construct a Turing machine that recognizes the language	CO 6	L6	10M
		$L=\{an bn, n>1\}$. Show an ID for the string 'aaabbb' with tape symbols.			
		OR			
10	a	Discriminate Universal Turing machine.	CO6	L5	6M
	b	Constructa TM for regular Expression 01(00+11)(0+1)*1.	CO6	L6	6M
		*** END ***			

Page 1 of 2

O.P.Code: 20ME0310

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year II Semester Supplementary Examinations June-2025 **THEORY OF MACHINES**

(Common to ME & AGE)

Time: 3 Hours

(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I

- a Explain the effect of gyroscopic couple on a Aeroplane 1
 - **b** An aircraft makes a half circle of 50 m radius towards left, when flying **CO1** at 200 km/hr. The engine and the propeller of the plane has a mass of 400 kg and a radius of gyration of 0.3 m. The engine rotates at 2400 rpm clockwise when viewed from the rear. Find the gyroscopic couple and its effect on the aircraft.

OR

The turning moment diagram for a multi cylinder engine has been drawn CO1 2 **L3 12M** to a scale 1 mm = 600 N-m vertically and 1 mm = 3° horizontally. The intercepted areas between the output torque curve and the mean resistance line, taken in order from one end, are as follows: +52, -124,+92, -140, +85, -72 and +107 mm2, when the engine is running at a speed of 600 r.p.m. If the total fluctuation of speed is not to exceed \pm 1.5% of the mean, find the necessary mass of the flywheel of radius 0.5 m.

UNIT-II

3		Explain the working of a single-plate clutch with neat sketch	CO2	L1	12M
		OR			
4		A centrifugal clutch is to transmit 15 kW at 900 r.p.m. The shoes are four in number. The speed at which the engagement begins is 3/4th of the running speed. The inside radius of the pulley rim is 150 mm and the center of gravity of the shoe lies at 120 mm from the center of the spider. The shoes are lined with Ferrodo for which the coefficient of friction may be taken as 0.25. Determine 1. Mass of the shoes, and 2. Size of the shoes, if angle subtended by the shoes at the center of the spider is 60° and the pressure exerted on the shoes is 0.1 N/mm ² .	CO2	L3	12M
5	a	Calculate the vertical height of a Watt governor when it rotates at 60	CO3	L1	10M
		r.p.m. Also find the change in vertical height when its speed increases to			
		61 r.p.m.			
	b	What is meant by Sensitiveness of governors?	CO3	L1	2M
		OR			
6		A Proell governor has equal arms of length 300 mm. The upper and	CO3	L3	12M
		lower ends of the arms are pivoted on the axis of the governor. The			
		extension arms of the lower links are each 80 mm long and parallel to			
		the axis when the radii of rotation of the balls are 150 mm and 200 mm.			
		The mass of each ball is 10 kg and the mass of the central load is 100 kg.			

Determine the range of speed of the governor.

R20

Max. Marks: 60

L2

L3

4M

8M

CO1

UNIT-IV

7	a	Four masses m1, m2, m3, and m4 are 200 kg, 300 kg, 240 kg and 260 kg respectively. The corresponding radii of rotation are 0.2 m, 0.15 m, 0.25	CO 4	L3	10M
		m and 0.3 m respectively and the angles between successive masses are			
		45°, 75° and 135°. Find the position and magnitude of the balance mass			
		required, if its radius of rotation is 0.2 m.			
	b	Define Swaying couple?	CO4	L1	2M
		OR			
8	a	Derive the following expression of effects of partial balancing in two	CO4	L3	10M
		cylinder locomotive engine (i) Variation of attractive force (ii) Swaying			
		couple (iii) Hammer blow			
	b	Why rotating masses are to be dynamically balanced?	CO4	L1	2M
		UNIT-V			
9		A shaft of length 0.75 m, supported freely at the ends, is carrying a body	CO5	L3	12M
		of mass 90 kg at 0.25 m from one end. Find the natural frequency of			
		transverse vibration. Assume $E = 200 \text{ GN/m2}$ and shaft diameter = 50			
		mm.			
		OR			
10	a	Derive the Natural Frequency of Free Torsional Vibrations.	CO5	L3	10M
	b	Define resonance.	CO5	L1	2M

*** END ***

 \cdot

я,

×.

Page 1 of 2

	SIDDHARTH			(Al	JTON(OMOUS)					
	B.Tech II Y NU	ear ll MERI	Semes CAL M	ETH)DS, P	ROBAL	BILLEY	ninati & ST.	ons Jur ATISTI	e-202 CS	Ō	
Time	3 Hours			(Con	nmon te	o CE &	AGE)			Max.	Mark	s: 60
I ime:	5 Hours		(Ans	wer all		Jnits 5 x	12 = 60) Mark	xs)			
						UNIT-I	0 1	. 1	u u tha	CO1	L3	12M
1	Find a root Newton-Raph	of the	e equa	tion,	$xe^{x} - 1$	<i>cos x =</i> decimai	0, by a blaces	арріун	ng uie	COI	LS	12111
						OR						
2	Using Newton	's forw	ard for	mula,	find f(1	L.4) for (he follo	wing c	lata:	CO1	L3	12M
	x 1.1	1	.3 1	1.5	1.7	1.9-	1					
	y 0.2			.25	1.89	2.61]			2		
						JNIT-II	0.01			CO1	т 2	1014
3	Determine th	e valu	e of y v	when .	$\kappa = 0.1$ dy	and x^2	= 0.2 by	7 R-K		CO2	L3	12M
	method of 4 th	order	, given	that	$\frac{1}{dx} = x$		y(0) = 1					
4		dx 1	+ - 1-i-e -	6 011	vinter	OR	ranezoi	dal m	ile	CO2	L3	12M
4	Evaluate $\int_0^6 \frac{1}{1}$						Tapezoi	uui i u				
	(ii) Simpson's	$\frac{1}{3}$ rule	e (111) Si	mpso		JNIT-II	a					
_	Calculate th	e first	four	mome	_			distr	ibution	CO3	L4	12M
5	about the me		1041	mome	1100 01					Ē		
	<i>x</i> 0	1	2	3	4	5	6	7	8			
	<i>f</i> 1	8	28	56	70	56	28	8	1]		
	Also calculat	e β_1 a	nd β_2 .			OR		1		×		
6	In a bolt fac	tory m	achine	s m	anufac		5%, 35%	% and	40% of	CO3	L3	12M
U	the total. Of	their	output	5%,	4% an	id 2% a	re defe	ctive	bolts. A			
	bolt is draw defective. Wi	n at 1	andom	l from	the p	product	and is	foun uufact	d to be ured by			
	machines A,		e trie pi	UDADI	nues e	inat it v	as ma	idiaot				
						UNIT-I						
7	A random va	riable	'X' has	s the f						CO 4	L4	12M
	X = x	0	1	$\frac{2}{2^{L}}$	$\frac{3}{2k}$	k = 5 $3k = k^2$	$\frac{6}{2k^2}$	7	$\frac{k^{2}}{2+k}$			1
	p(X=x)	0	k	2 <i>k</i>	2K _		Zĸ	2K	+ K			
	Find (i) the	value	of the	const	ant 'k	r', (ii) p	$(3 < X \le$	(ii	i) mean	L		
	(iv) variance								1.1			0
0		c ²			e e e	OR				CO 4	L3	12M
8	If $f(x) = k(4)$ (i) the constant				nen iir		variance	9		-		

H.T.No.

R20

(i) the constant k (ii) mean (iii) variance

a.

4

O.P.Code: 20HS0833

UNIT-V

9 a Out of 800 families with 5 children each, how many would you CO5 L3 6M expect to have 4 boys, 3 girls, either 2 or 3 boys? Assume equal probabilities for boys and girls.

b If 'X' is a Poisson variate $p(X=2) = \frac{2}{3}p(X=1)$ finds p(X=0) and **CO5 L3 6M**

p(X=3).

OR

10 Three Judges in the following order rank ten competitors in a CO5 L3 12M beauty contest. Use rank correlation which pair of Judges has the nearest approach to common tastes in beauty.

Ranks by A	1	6	5	10	3	2	4	9	7	8
Ranks by B	3	5	8	4	7	10	2	1	6	9
Ranks by C	6	4	9	8	1	2	3	10	5	7
					the state The	NTTN 4	له ماه			

R20

B.Tech II Year II Semester Supplementary Examinations June-2025 DISCRETE MATHEMATICS

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(CSE, CSIT, CIC, CCC, CAD, CSM, CAI)

Max. Marks: 60

Time: 3 Hours

O.P.Code: 20HS0836

(Answer all Five Units $5 \times 12 = 60$ Marks)

H.T.No.

UNIT-I

- a Explain indegree and out degree of a graph. Also explain about the 1 **CO1** L2 **6M** adjacency matrix representation of graphs. Illustrate with an example? **b** Draw the graph represented by the following adjacency matrices: **CO1 L2 6M** (i) $\begin{vmatrix} 2 & 0 & 3 & 0 \\ 0 & 3 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{vmatrix}$ (ii) $\begin{vmatrix} 0 & 1 & 1 & 2 \\ 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{vmatrix}$. OR a Explain about complete graph & complete bipartite graph with example. 2 **CO1** L2 **6M b** Explain the Rooted tree and Spanning tree with an example. **CO1 L2 6M** UNIT-II a Construct the truth table for the following formula $\neg(\neg P \lor \neg Q)$ v **CO2 L3** 3 **6M** $(R \rightarrow Q).$ **b** Construct the truth table to Show that $\neg P \land (Q \land P)$ is a contradiction. **CO2** L3 **6M** OR a Obtain PCNF of $A = (p \land q) \lor (\neg p \land q) \lor (q \land r)$ by constructing PDNF. 4 **CO2** L5 **6M b** Define Maxterms & Minterms of P & Q & give their truth tables. **CO2** L2 **6M** UNIT-III Let A be a given finite set and P(A) its power set . let \subseteq be the inclusion CO3 **12M** 5 L2 relation on the elements of P(A). Draw the Hasse diagram of (P(A), \subseteq) for $A = \{a\}$ ii) $A = \{a, b\}$ iii) $A = \{a, b, c\}$ iv) $A = \{a, b, c, d\}$. OR a Show that the set $\{1,2,3,4,5\}$ is not a group under addition and CO4 6 L2 **6M** multiplication modulo 6. **b** Show that the binary operation * defined on (R,*) where $x * y = x^y$ is **CO4** L2
 - b Show that the binary operation * defined on (R,*) where $x * y = x^y$ is CO4 L2 6M not associative.

UNIT-IV

7 a Enumerate the number of non negative integral solutions to the CO5 L3 6M inequality

 $x_1 + x_2 + x_3 + x_4 + x_5 \le 19.$

b How many integral solutions are there to $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ where CO5 L3 6M each (i) $x_i \ge 2$ (ii) $x_i > 2$.

OR

- 8 a Applying pigeon hole principle show that of any 14 integers are selected CO5 L2 6M from the set S = {1, 2, 3... 25 } there are atleast two whose sum is 26. Also write a statement that generalizes this result.
 - b Show that if 8 people are in a room, at least two of them have birthdays CO5 L2 6M that occur on the same day of the week.

UNIT-V

9 a Solve $a_n = a_{n-1} + f(n)$ for $n \ge 1$ by using substitution method.CO6L36Mb Determine the coefficient of x^{20} in $(x^3 + x^4 + x^5 + \cdots)^5$.CO6L36M

OR

- **10 a** Solve $a_n 7a_{n-1} + 10a_{n-2} = 4^n$. **CO6 L3 6M**
 - **b** Solve $a_n = a_{n-1} + 2a_{n-2}$ $n \ge 2$ with the initial condition CO6 L3 6M $a_0 = 2, a_1 = 1.$

R20

H.T.No.

B.Tech. II Year II Semester Supplementary Examinations June-2025 **CONTROL SYSTEMS**

Time: 3 Hours

(Electronics and Communications Engineering)

(Answer all Five Units $5 \times 12 = 60$ Marks)

Max. Marks: 60

UNIT-I

Find the transfer function of Armature controlled DC Motor. 1 **CO2** L3 **12M**

OR

2 Obtain the overall gain C(S)/R(S) from signal flow graph shown in fig.1 **CO2** L4 **12M**

List out the time domain specifications and derive the expressions for CO3 L2 3 **12M** Rise time, Peak time and Peak overshoot.

OR

4 A positional control system with velocity feedback shown in fig 1. What CO3 L4 **12M** is the response c(t) of the system for unit step input?

Fig 1 : Positional control system. **UNIT-III**

5 Find the range of K for stability of unity feedback system whose open CO5 L3 **12M** loop transfer function is $G(s) = \frac{\kappa}{S(S+1)(S+2)}$ using Routh's stability criterion.

OR

6 Develop the root locus of the system whose open loop transfer function CO5 L4 **12M** is G(S)= $\frac{K(S+9)|}{S(S^2+4S+11)}$

UNIT-IV

7 **a** Define and derive the expression for resonant frequency **CO4** L1 **6M b** Given $\xi = 0.7$ and $\omega_n = 10$ rad/sec. Find resonant peak, resonant CO4 L3 **6M** frequency and bandwidth.

OR

8 Sketch the polar plot for the open loop transfer function of a unity CO4 L4 12M feedback system is given by $G(s) = \frac{1}{S^2(1+S)(1+2S)}$ Determine Gain Margin & Phase Margin.

UNIT-V

9 Determine the Solution for Homogeneous and Non homogeneous State CO6 L3 12M equations.

OR

10 a Explain the properties of STM. b For the state equation: $X = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} X + \begin{pmatrix} 0 \\ 1 \end{pmatrix} U$ when, $X(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ Find the CO6 L1 6M solution of the state equation for the unit step input. *** END ***